
  

Numerical Algorithms

Simple Algorithms to speed up basic functions,
using these techniques can optimize the basic 

functions so that you can focus on the main 
algorithm.



  

Things to be covered

 Euclid's Algorithm
 Least common multiple
 Prime testing by trial division
 Sieve of Eratosthenes
 Horner's rule
 Factoring
 Efficient exponentation



  

Euclid's Algorithm  (GCD)

 The algorithm is used to obtain the GCD of any 
two given numbers

 By continuoesly calculating the remainder of the 
two numbers, the GCD is determined as soon 
as the remainder eqauls 0



  

Euclid's Pseudo code

GCD(int a,int b)
if b == 0

return a
else

return GCD(b,a%b)



  

Least common multiple

 As soon as you understand GCD it can be 
applied to finding the least common multiple

 The method is derived from the High School 
method of calculating the prime factors of both 
numbers then multiplying the union of each 
number



  

Least common multiple
Take 24 and 36

24 = 2.2.2.3
36 = 2.2.  .3.3

Union = 2.2.2.3.3

LCM = 72

Note that the it can be simplified to: 
LCM = (24.36)/GCD(36,24)

thus LCM = (a*b)/GCD(a,b)



  

Prime testing by trail division

 Note that you would only use this method to 
test whether a given number is prime

 To generate primes use Sieve of Eratosthenes
 Note: You only need to test upto √N
 This can be optimised by testing 2 apart then 

use an interval of 2
 O(√N)



  

Sieve of Eratosthenes

 Generates a list of primes
 Calculates primes in a range from 2 to N
 Faster than repeated trail division
 Start by assuming all numbers except 1 are 

prime



  

The Algorithm

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Iterate through the numbers in increasing order until you find a number that is marked as prime



  

The Algorithm

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
Confirm the number as prime then mark the multiples of 2 onwards from 2^2 as not prime



  

The Algorithm

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Now continue using the same pattern



  

The Algorithm

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

As soon as you finish with 7 there is no more need to eliminate as 11^2 > 100



  

The Algorithm

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Green primes



  

Pseudo Code

Sieve(int n)
bool pTest[n+1]
//Set values == True
for i = 2 to n

if pTest[i]
//Add to list
for j = i*i to n step i

pTest[j] = False
return list



  

Horner's rule

 An efficient way to calculate polynomials
 Take  
 This can become
 By using the notation above this can be 

reduced to 8 operations compared to 14 in the 
first

 Thus you can use Horner's rule for a 
polynomials to the Nth degree in the form of:

f  X =X  X X 5X12−2−24

f  X =5X 412X3−2X 2−2X4

f  X =A0 X
NA1 X

N−1−A3 X
N−2 ...AN −1 XAN



  

Pseudo Code

Horner(double [ ] A,double X,int N)
float Ans = A[0]
for i = 1 to N

Ans *= X
Ans += A[i]

return Ans



  

Integer Factoring

 When you need to reduce numbers to their 
prime factors

 DON'T generate a list of primes
 Starting with 2 and moving upwards will ensure 

all numbers are prime



  

Pseudo Code

PrimeFactors(int N)
Ans = N
array Factors
for i = 2 to N

while (Ans % i == 0)
Factors.append(i)
Ans /= i

if (Ans == 1) break
return Factors



  

Efficient Exponentation

 Calculate          in O(log b) time
 There are two methods, both are based on the 

binary representation of the exponent
 Left to Right (Recursive overhead)
 Right to Left (No recursive overhead)
 Both methods are O(log b)

ab



  

Left to Right

 Take the statement
 That can be represented as 
 Initialize an answer variable to 1
 Then start from the left most value
 If the value is 1 multiply the answer variable 

with a
 Move to the next position and square the 

answer

a29

a111012



  

Left to Right Pseudo Code

LeftToRight(int a,int b)
if (b == 0)  //exit statement

return 1;
else

if (b % 2 == 1)
return a*LeftToRight(a,b/2)**2

else
return LeftToRight(a,b/2)**2



  

Right to Left

 Similar to Left to Right, but doesn't need 
recursion

 You keep an additional index of the value of the 
exponent at the current position of the binary 
representation

 If the value is 1 at that position, multiply the 
answer with the index



  

Pseudo Code

RightToLeft(int a, int b)
int Index = a
int Answer = 1
while (b)

if (b % 2 == 1)
Answer *= Index

Index *= Index
b /= 2

return Answer



  

Questions

?


